Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
dc.contributor.author | Ballesteros, A. | |
dc.contributor.author | Enciso, A. | |
dc.contributor.author | Herranz, F.J. | |
dc.contributor.author | Ragnisco, O. | |
dc.contributor.author | Riglioni, D. | |
dc.date.accessioned | 2019-02-13T18:08:35Z | |
dc.date.available | 2019-02-13T18:08:35Z | |
dc.date.issued | 2011 | |
dc.description.abstract | The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler-Coloumb potentials, in order to obtain maximally superintegrable classical systems on N-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator potential leads to two families of superintegrable systems which are interpreted as an intrinsic Kepler-Coloumb system on a hyperbolic curved space and as the so-called Darboux III oscillator. On the other, the Kepler-Coloumb potential gives rise to an oscillator system on a spherical curved space as well as to the Taub-NUT oscillator. Their integrals of motion are explicitly given. The role of the (flat/curved) Fradkin tensor and Laplace-Runge-Lenz N-vector for all of these Hamiltonians is highlighted throughout the paper. The corresponding quantum maximally superintegrable systems are also presented. | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. This work was partially supported by the Spanish MICINN under grants MTM2010-18556 and FIS2008-00209, by the Junta de Castilla y Le´on (project GR224), by the Banco Santander–UCM (grant GR58/08-910556) and by the Italian–Spanish INFN–MICINN (project ACI2009-1083). F.J.H. is deeply grateful to W. Miller Jr. for very helpful suggestions on the St¨ackel transform as well on superintegrability. | uk_UA |
dc.identifier.citation | Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform / A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 48 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 37J35; 70H06; 81R12 | |
dc.identifier.other | DOI:10.3842/SIGMA.2011.048 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147172 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 048-Ballesteros.pdf
- Розмір:
- 424.37 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: