Elliptically Distributed Lozenge Tilings of a Hexagon

dc.contributor.authorBetea, D.
dc.date.accessioned2025-11-24T10:49:46Z
dc.date.issued2018
dc.description.abstractWe present a detailed study of a four-parameter family of elliptic weights on tilings of a hexagon introduced by Borodin, Gorin, and Rains, generalizing some of their results. In the process, we connect the combinatorics of the model with the theory of elliptic special functions. Using canonical coordinates for the hexagon, we show how the n-point distribution function and transitional probabilities connect to the theory of BCn-symmetric multivariate elliptic special functions and of elliptic difference operators introduced by Rains. In particular, the difference operators intrinsically capture all of the combinatorics. Based on quasi-commutation relations between the elliptic difference operators, we construct certain natural measure-preserving Markov chains on such tilings, which we immediately use to obtain an exact sampling algorithm for these elliptic distributions. We present some simulated random samples exhibiting interesting and probably new arctic boundary phenomena. Finally, we show that the particle process associated with such tilings is determinantal with a correlation kernel given in terms of the univariate elliptic biorthogonal functions of Spiridonov and Zhedanov.
dc.description.sponsorshipThe author would like to thank Alexei Borodin, Fokko van de Bult, Vadim Gorin, and Eric Rains for their help through numerous conversations. He is also indebted to Igor Pak and Greta Panova for putting the tiling picture herein described into perspective, and to three anonymous referees for improving the clarity of the manuscript. This article was written while the author was a graduate student in the Department of Mathematics at the California Institute of Technology, to which many remerciements are due for all its support during the five years the author spent there.
dc.identifier.citationElliptically Distributed Lozenge Tilings of a Hexagon / D. Betea // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2018.032
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33E05; 60C05; 05E05
dc.identifier.otherarXiv: 1110.4176
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/209540
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleElliptically Distributed Lozenge Tilings of a Hexagon
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
032-Betea.pdf
Розмір:
506.4 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: