Hilbert problem with measurable data for semilinear equations of the Vekua type

dc.contributor.authorGutlyanskiĭ, V.Ya.
dc.contributor.authorNesmelova, O.V.
dc.contributor.authorRyazanov, V.I.
dc.contributor.authorYefimushkin, A.S.
dc.date.accessioned2022-08-27T11:17:38Z
dc.date.available2022-08-27T11:17:38Z
dc.date.issued2022
dc.description.abstractWe prove the existence of solutions for the Hilbert boundary-value problem with arbitrary measurable data for the nonlinear equations of the Vekua’s type ∂Z̅̄f(z) = h(z)q(f(z)). The found solutions differ from the classical ones, because our approach is based on the notion of boundary values in the sense of angular limits along nontangential paths. The results obtained can be applied to the establishment of existence theorems for the Poincaré and Neumann boundary-value problems for the nonlinear Poisson equations of the form ΔU(z) = H(z)Q(U (z )) with arbitrary measurable boundary data with respect to the logarithmic capacity. They can be also applied to the study of some semilinear equations of mathematical physics modeling such processes as the diffusion with absorption, plasma states, stationary burning etc. in anisotropic and inhomogeneous media.uk_UA
dc.description.abstractДана робота містить теореми існування розв’язків граничної задачі Гільберта з довільними вимірними даними для відповідних нелінійних рівнянь типу Векуа ∂Z̅̄f(z) = h(z)q(f(z)). Знайдені розв’язки не є класичними, оскільки наш підхід базується на інтерпретації граничних значень у сенсі кутових (вздовж недотичних шляхів) границь, що є традиційним інструментом геометричної теорії функцій, але не рівнянь у частинних похідних. Одержані результати можуть бути застосовані до встановлення теорем існування для граничної задачі Пуанкаре і, зокрема, для задачі Неймана для нелінійних рівнянь Пуасона виду ΔU(z) = H(z)Q(U(z)) з довільними вимірними даними відносно логарифмічної ємності. Таким чином, вони можуть буть застосовані також до напівлінійних рівнянь математичної фізики під час моделювання різних фізичних процесів, таких як дифузія з абсорбцією, стани плазми, стаціонарне горіння і т. д. в анізотропних і неоднорідних середовищах. Останнє буде змістом наших подальших статей.uk_UA
dc.description.sponsorshipThis work was partially supported by grants of Ministry of Education and Science of Ukraine, project number is 0119U100421.uk_UA
dc.identifier.citationHilbert problem with measurable data for semilinear equations of the Vekua type / V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2022. — № 2. — С. 3-11. — Бібліогр.: 14 назв. — англ.uk_UA
dc.identifier.issn1025-6415
dc.identifier.otherDOI: doi.org/10.15407/dopovidi2022.02.003
dc.identifier.udc517.5
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/184951
dc.language.isoenuk_UA
dc.publisherВидавничий дім "Академперіодика" НАН Україниuk_UA
dc.relation.ispartofДоповіді НАН України
dc.statuspublished earlieruk_UA
dc.subjectМатематикаuk_UA
dc.titleHilbert problem with measurable data for semilinear equations of the Vekua typeuk_UA
dc.title.alternativeЗадача Гільберта з вимірними даними для напівлінійних рівнянь типу Векуаuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Gutlyanskiĭ.pdf
Розмір:
207.97 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: