On n-Tuples of Subspaces in Linear and Unitary Spaces

dc.contributor.authorSamoilenko, Yu.S.
dc.contributor.authorYakymenko, D.Yu.
dc.date.accessioned2010-02-02T12:58:40Z
dc.date.available2010-02-02T12:58:40Z
dc.date.issued2009
dc.description.abstractWe study a relation between brick n-tuples of subspaces of a finite dimensional linear space, and irreducible n-tuples of subspaces of a finite dimensional Hilbert (unitary) space such that a linear combination, with positive coefficients, of orthogonal projections onto these subspaces equals the identity operator. We prove that brick systems of one-dimensional subspaces and the systems obtained from them by applying the Coxeter functors (in particular, all brick triples and quadruples of subspaces) can be unitarized. For each brick triple and quadruple of subspaces, we describe sets of characters that admit a unitarization.uk_UA
dc.identifier.citationOn n-Tuples of Subspaces in Linear and Unitary Spaces / Yu.S. Samoilenko, D.Yu. Yakymenko // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 1. — С. 48–60. — Библиогр.: 34 назв. — англ.uk_UA
dc.identifier.issn1029-3531
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/5700
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.statuspublished earlieruk_UA
dc.titleOn n-Tuples of Subspaces in Linear and Unitary Spacesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
05-Samoilenko.pdf
Розмір:
241.65 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
1.82 KB
Формат:
Item-specific license agreed upon to submission
Опис: