Second-Order Differential Operators in the Limit Circle Case
| dc.contributor.author | Yafaev, Dmitri R. | |
| dc.date.accessioned | 2025-12-30T15:52:53Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | We consider symmetric second-order differential operators with real coefficients such that the corresponding differential equation is in the limit circle case at infinity. Our goal is to construct the theory of self-adjoint realizations of such operators by analogy with the case of Jacobi operators. We introduce a new object, the quasiresolvent of the maximal operator, and use it to obtain a very explicit formula for the resolvents of all self-adjoint realizations. In particular, this yields a simple representation for the Cauchy-Stieltjes transforms of the spectral measures playing the role of the classical Nevanlinna formula in the theory of Jacobi operators. | |
| dc.description.sponsorship | Supported by the project Russian Science Foundation 17-11-01126. | |
| dc.identifier.citation | Second-Order Differential Operators in the Limit Circle Case, Dmitri R. Yafaev, SIGMA 17 (2021), 077, 13 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.077 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 33C45; 39A70; 47A40; 47B39 | |
| dc.identifier.other | arXiv:2105.08641 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211346 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Second-Order Differential Operators in the Limit Circle Case | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 077-Yafaev.pdf
- Розмір:
- 343.01 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: