Нестационарная гидроакустическая задача для жидкости конечной глубины
dc.contributor.author | Кубенко, В.Д. | |
dc.date.accessioned | 2017-11-23T16:04:58Z | |
dc.date.available | 2017-11-23T16:04:58Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Cтроится аналитическое решение плоской задачи о действии нестационарного давления на поверхности плоского слоя жидкости. Формулируется задача линейной акустики. Применяются интегральные преобразования Лапласа и Фурье. Обращение преобразований в случае постоянной области действия нагрузки выполнено при помощи табличных соотношений и соответствующих теорем о свертке, в результате чего удается получить выражение для давления в произвольной точке жидкости в замкнутом виде. Решение записано в виде суммы, m-й член которой представляет m-ю отраженную волну. Удержание в решении определенного конечного числа членов дает точное решение задачи на заданном интервале времени с учетом необходимого числа отражений. | uk_UA |
dc.description.abstract | Будується аналітичний розв'язок плоскої задачі про дію нестаціонарного тиску на поверхні плоского шару рідини. Формулюється задача лінійної акустики. Застосовуються інтегральні перетворення Лапласа і Фур'є. Обернення перетворень у випадку сталої області дії навантаження виконано за допомогою табличних співвідношень і відповідних теорем про згортку, в результаті чого вдається одержати вираз для тиску в довільній точці рідини в замкнутому вигляді. Розв'язок записано у вигляді суми, m-й член якої представляє m-у відбиту хвилю. Утримання в розв'язку певної кількості членів дає точний розв'язок задачі на заданому інтервалі часу з урахуванням необхідного числа відбитих хвиль. | uk_UA |
dc.description.abstract | An analytic solution of a plane problem on the action of a non-steady pressure on the surface of a flat layer of a fluid is constructed. The integral Laplace and Fourier transformations are applied. In the case of a steady region, where a load acts, the inversion of transformations is executed by means of tabular relations and the appropriate theorems of convolution. As a result, the formula for a pressure at an arbitrary point of the fluid is obtained in the closed form. The solution is presented in the form of a sum, whose m-term represents the m-th reflected wave. The retention of a certain number of terms in the solution gives the exact solution of the problem on the given time interval with regard for the necessary number of waves. | uk_UA |
dc.identifier.citation | Нестационарная гидроакустическая задача для жидкости конечной глубины / В.Д. Кубенко // Доповіді Національної академії наук України. — 2017. — № 2. — С. 24-30. — Бібліогр.: 3 назв. — рос. | uk_UA |
dc.identifier.issn | 1025-6415 | |
dc.identifier.other | DOI: doi.org/10.15407/dopovidi2017.02.024 | |
dc.identifier.udc | 532.528 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/126424 | |
dc.language.iso | ru | uk_UA |
dc.publisher | Видавничий дім "Академперіодика" НАН України | uk_UA |
dc.relation.ispartof | Доповіді НАН України | |
dc.status | published earlier | uk_UA |
dc.subject | Механіка | uk_UA |
dc.title | Нестационарная гидроакустическая задача для жидкости конечной глубины | uk_UA |
dc.title.alternative | Нестаціонарна гідроакустична задача для рідини скінченої глибини | uk_UA |
dc.title.alternative | Non-steady hydroacoustical problem for a fluid of finite depth | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 04-Kubenko.pdf
- Розмір:
- 161.11 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: