Cyclic Homology and Quantum Orbits

dc.contributor.authorMaszczyk, T.
dc.contributor.authorSütlü, S.
dc.date.accessioned2019-02-13T16:47:03Z
dc.date.available2019-02-13T16:47:03Z
dc.date.issued2015
dc.description.abstractA natural isomorphism between the cyclic object computing the relative cyclic homology of a homogeneous quotient-coalgebra-Galois extension, and the cyclic object computing the cyclic homology of a Galois coalgebra with SAYD coefficients is presented. The isomorphism can be viewed as the cyclic-homological counterpart of the Takeuchi-Galois correspondence between the left coideal subalgebras and the quotient right module coalgebras of a Hopf algebra. A spectral sequence generalizing the classical computation of Hochschild homology of a Hopf algebra to the case of arbitrary homogeneous quotient-coalgebra-Galois extensions is constructed. A Pontryagin type self-duality of the Takeuchi-Galois correspondence is combined with the cyclic duality of Connes in order to obtain dual results on the invariant cyclic homology, with SAYD coefficients, of algebras of invariants in homogeneous quotient-coalgebra-Galois extensions. The relation of this dual result with the Chern character, Frobenius reciprocity, and inertia phenomena in the local Langlands program, the Chen-Ruan-Brylinski-Nistor orbifold cohomology and the Clifford theory is discussed.uk_UA
dc.description.sponsorshipThe authors would like to thank the anonymous referees for their constructive comments improving the paper. The paper was partially supported by the NCN grant 2011/01/B/ST1/06474. S. Sutlu would like to thank his former PhD advisor B. Rangipour for drawing his attention to the homology of the coalgebra-Galois extensions, Institut des Hautes Etudes Scientifiques (IHES) ´ for the hospitality provided during part of this work, and finally the organizers of the conference “From Poisson Brackets to Universal Quantum Symmetries”, held at IMPAN, Warsaw, for the stimulating environment provided.uk_UA
dc.identifier.citationCyclic Homology and Quantum Orbits / T. Maszczyk, S. Sütlü // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 40 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 19D55; 57T15; 06A15; 46A20
dc.identifier.otherDOI:10.3842/SIGMA.2015.041
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147108
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleCyclic Homology and Quantum Orbitsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
41-Maszczyk.pdf
Розмір:
476.84 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: