Generically, Arnold-Liouville Systems Cannot be Bi-Hamiltonian
| dc.contributor.author | Boualem, Hassan | |
| dc.contributor.author | Brouzet, Robert | |
| dc.date.accessioned | 2026-01-02T08:31:43Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | We state and prove that a certain class of smooth functions, said to be BH-separable, is a meagre subset for the Fréchet topology. Because these functions are the only admissible Hamiltonians for Arnold-Liouville systems admitting a bi-Hamiltonian structure, we get that, generically, Arnold-Liouville systems cannot be bi-Hamiltonian. At the end of the paper, we determine, both as a concrete representation of our general result and as an illustrative list, which polynomial Hamiltonians 𝐻 of the form 𝐻(𝑥, 𝑦) = 𝑥𝑦 + 𝑎𝑥³+𝑏𝑥²𝑦+𝑐𝑥𝑦²+𝑑𝑦³ are BH-separable. | |
| dc.description.sponsorship | We thank Timothy Neal for his proofreading and for improving the English language of our paper. We also thank Roman G. Smirnov for drawing our attention to the importance of Lenard’s early work in the genesis of the theory of bi-Hamiltonian systems. Finally, we thank the anonymous referees for their insightful comments and careful reading, which greatly improved this article. | |
| dc.identifier.citation | Generically, Arnold-Liouville Systems Cannot be Bi-Hamiltonian. Hassan Boualem and Robert Brouzet. SIGMA 17 (2021), 096, 17 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.096 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 26A21; 26B35; 26B40; 37J35; 37J39; 58K15; 70H06 | |
| dc.identifier.other | arXiv:2105.11123 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211431 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Generically, Arnold-Liouville Systems Cannot be Bi-Hamiltonian | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 096-Boualem.pdf
- Розмір:
- 484.23 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: