Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential

dc.contributor.authorTanoudis, Y.
dc.contributor.authorDaskaloyannis, C.
dc.date.accessioned2019-02-13T18:09:05Z
dc.date.available2019-02-13T18:09:05Z
dc.date.issued2011
dc.description.abstractIn the three-dimensional flat space, a classical Hamiltonian, which has five functionally independent integrals of motion, including the Hamiltonian, is characterized as superintegrable. Kalnins, Kress and Miller (J. Math. Phys. 48 (2007), 113518, 26 pages) have proved that, in the case of nondegenerate potentials, i.e. potentials depending linearly on four parameters, with quadratic symmetries, posses a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral imply that the integrals of motion form a ternary quadratic Poisson algebra with five generators. The superintegrability of the generalized Kepler–Coulomb potential that was investigated by Verrier and Evans (J. Math. Phys. 49 (2008), 022902, 8 pages) is a special case of superintegrable system, having two independent integrals of motion of fourth order among the remaining quadratic ones. The corresponding Poisson algebra of integrals is a quadratic one, having the same special form, characteristic to the nondegenerate case of systems with quadratic integrals. In this paper, the ternary quadratic associative algebra corresponding to the quantum Verrier–Evans system is discussed. The subalgebras structure, the Casimir operators and the the finite-dimensional representation of this algebra are studied and the energy eigenvalues of the nondegenerate Kepler–Coulomb are calculated.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html.uk_UA
dc.identifier.citationAlgebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential / Y. Tanoudis, C. Daskaloyannis // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 81R12; 37J35; 70H06; 17C90
dc.identifier.otherDOI:10.3842/SIGMA.2011.054
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147173
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleAlgebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potentialuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
054-Tanoudis.pdf
Розмір:
286.06 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: