Algebraic Geometry of Matrix Product States

dc.contributor.authorCritch, A.
dc.contributor.authorMorton, J.
dc.date.accessioned2019-02-10T09:46:25Z
dc.date.available2019-02-10T09:46:25Z
dc.date.issued2014
dc.description.abstractWe quantify the representational power of matrix product states (MPS) for entangled qubit systems by giving polynomial expressions in a pure quantum state's amplitudes which hold if and only if the state is a translation invariant matrix product state or a limit of such states. For systems with few qubits, we give these equations explicitly, considering both periodic and open boundary conditions. Using the classical theory of trace varieties and trace algebras, we explain the relationship between MPS and hidden Markov models and exploit this relationship to derive useful parameterizations of MPS. We make four conjectures on the identifiability of MPS parameters.uk_UA
dc.description.sponsorshipAC and JM were supported in part by DARPA under awards FA8650-10-C-7020 and N66001-10- 1-4040 respectively. We would like to thank J. Biamonte, J. Eisert, B. Sturmfels, F. Vaccarino, F. Verstraete, and G. Vidal for helpful discussions. We are also grateful to anonymous referees who provided helpful comments and corrections.uk_UA
dc.identifier.citationAlgebraic Geometry of Matrix Product States / A. Critch, J. Morton // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14J81; 81Q80; 14Q15
dc.identifier.otherDOI:10.3842/SIGMA.2014.095
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146599
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleAlgebraic Geometry of Matrix Product Statesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
22-Critch.pdf
Розмір:
352.45 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: