Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics

dc.contributor.authorManno, G.
dc.contributor.authorMoreno, G.
dc.date.accessioned2019-02-15T18:51:11Z
dc.date.available2019-02-15T18:51:11Z
dc.date.issued2016
dc.description.abstractThis paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampère equations, by using the so-called ''meta-symplectic structure'' associated with the 8D prolongation M⁽¹⁾ of a 5D contact manifold M. We write down a geometric definition of a third-order Monge-Ampère equation in terms of a (class of) differential two-form on M⁽¹⁾. In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge-Ampère equations, herewith called of Goursat type.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. The authors wish to express their gratitude towards the anonymous referees whose comments contributed to shape the paper into its final form. The authors thank C. Ciliberto, E. Ferapontov and F. Russo for stimulating discussions. The research of the first author has been partially supported by the project “Finanziamento giovani studiosi – Metriche proiettivamente equivalenti, equazioni di Monge–Amp`ere e sistemi integrabili”, University of Padova 2013–2015, by the project “FIR (Futuro in Ricerca) 2013 – Geometria delle equazioni dif ferenziali”. The research of the second author has been partially supported by the Marie Sk lodowska–Curie Action No 654721 “GEOGRAL”, by the University of Salerno, and by the project P201/12/G028 of the Czech Republic Grant Agency (GA CR). Both the authors are members of G.N.S.A.G.A. ˇ of I.N.d.A.M.uk_UA
dc.identifier.citationMeta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics / G. Manno, G. Moreno // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53D10; 35A30; 58A30; 14M15
dc.identifier.otherDOI:10.3842/SIGMA.2016.032
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147730
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleMeta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristicsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
032-Manno.pdf
Розмір:
707.47 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: