Real Part of Twisted-by-Grading Spectral Triples

dc.contributor.authorFilaci, Manuele
dc.contributor.authorMartinetti, Pierre
dc.date.accessioned2025-12-22T09:28:08Z
dc.date.issued2020
dc.description.abstractAfter a brief review of the applications of twisted spectral triples to physics, we adapt to the twisted case the notion of the real part of a spectral triple. In particular, when one twists a usual spectral triple by its grading, we show that - depending on the 𝛫𝛰 dimension - the real part is either twisted as well, or is the intersection of the initial algebra with its opposite. We illustrate this result with the spectral triple of the standard model.
dc.identifier.citationReal Part of Twisted-by-Grading Spectral Triples. Manuele Filaci and Pierre Martinetti. SIGMA 16 (2020), 109, 10 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.109
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 58B34; 46L87; 81T75
dc.identifier.otherarXiv:2010.15367
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211011
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleReal Part of Twisted-by-Grading Spectral Triples
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
109-Filaci.pdf
Розмір:
316.07 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: