Automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees

dc.contributor.authorLavrenyuk, Y.V.
dc.contributor.authorSushchansky, V.I.
dc.date.accessioned2019-06-17T11:17:16Z
dc.date.available2019-06-17T11:17:16Z
dc.date.issued2003
dc.description.abstractA representation of homogeneous symmetric groups by hierarchomorphisms of spherically homogeneous rooted trees are considered. We show that every automorphism of a homogeneous symmetric (alternating) group is locally inner and that the group of all automorphisms contains Cartesian products of arbitrary finite symmetric groups. The structure of orbits on the boundary of the tree where investigated for the homogeneous symmetric group and for its automorphism group. The automorphism group acts highly transitive on the boundary, and the homogeneous symmetric group acts faithfully on every its orbit. All orbits are dense, the actions of the group on different orbits are isomorphic as permutation groups.uk_UA
dc.identifier.citationAutomorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees / Y.V. Lavrenyuk, V.I. Sushchansky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 4. — С. 33–49. — Бібліогр.: 13 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification: 20B35, 20E08, 20F28, 20F50.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/155723
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleAutomorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted treesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Lavrenyuk.pdf
Розмір:
207.26 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: