Integration of Cocycles and Lefschetz Number Formulae for Differential Operators

dc.contributor.authorRamadoss, A.C.
dc.date.accessioned2019-02-11T14:54:27Z
dc.date.available2019-02-11T14:54:27Z
dc.date.issued2011
dc.description.abstractLet E be a holomorphic vector bundle on a complex manifold X such that dimCX=n. Given any continuous, basic Hochschild 2n-cocycle ψ2n of the algebra Diffn of formal holomorphic differential operators, one obtains a 2n-form fε,ψ2n(D) from any holomorphic differential operator D on E. We apply our earlier results [J. Noncommut. Geom. 2 (2008), 405-448; J. Noncommut. Geom. 3 (2009), 27-45] to show that ∫X fε,ψ2n(D) gives the Lefschetz number of D upto a constant independent of X and ε. In addition, we obtain a ''local'' result generalizing the above statement. When ψ2n is the cocycle from [Duke Math. J. 127 (2005), 487-517], we obtain a new proof as well as a generalization of the Lefschetz number theorem of Engeli-Felder. We also obtain an analogous ''local'' result pertaining to B. Shoikhet's construction of the holomorphic noncommutative residue of a differential operator for trivial vector bundles on complex parallelizable manifolds. This enables us to give a rigorous construction of the holomorphic noncommutative residue of D defined by B. Shoikhet when E is an arbitrary vector bundle on an arbitrary compact complex manifold X. Our local result immediately yields a proof of a generalization of Conjecture 3.3 of [Geom. Funct. Anal. 11 (2001), 1096-1124].uk_UA
dc.description.sponsorshipI am grateful to Giovanni Felder and Thomas Willwacher for some very useful discussions. This work would not have reached its current form without their pointing out important shortcomings in earlier versions. I am also grateful to Boris Shoikhet for useful discussions. I thank the referees of this article for their constructive suggestions. This work was done (prior to my joining my current position) partly at Cornell University and partly at IHES. I am grateful to both these institutions for providing me with a congenial work atmosphere.uk_UA
dc.identifier.citationIntegration of Cocycles and Lefschetz Number Formulae for Differential Operators / A.C. Ramadoss // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 23 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 16E40; 32L05; 32C38; 58J42
dc.identifier.otherDOI:10.3842/SIGMA.2011.010
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146775
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleIntegration of Cocycles and Lefschetz Number Formulae for Differential Operatorsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
010-Ramadoss.pdf
Розмір:
580.42 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: