Elliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circle

dc.contributor.authorTsujimoto, S.
dc.contributor.authorZhedanov, A.
dc.date.accessioned2019-02-19T18:00:32Z
dc.date.available2019-02-19T18:00:32Z
dc.date.issued2009
dc.description.abstractUsing the technique of the elliptic Frobenius determinant, we construct new elliptic solutions of the QD-algorithm. These solutions can be interpreted as elliptic solutions of the discrete-time Toda chain as well. As a by-product, we obtain new explicit orthogonal and biorthogonal polynomials in terms of the elliptic hypergeometric function ₃E₂(z). Their recurrence coefficients are expressed in terms of the elliptic functions. In the degenerate case we obtain the Krall-Jacobi polynomials and their biorthogonal analogs.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany). The authors thank L. Golinskii, A. Kirillov, C. Krattenthaler, A. Magnus, M. Rahman and V. Spiridonov for discussion. The authors are also indebted to the referees for careful reading the manuscript and many suggestions leading to improving of the text.uk_UA
dc.identifier.citationElliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circle / S. Tsujimoto, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 33E05; 33E30; 33C47
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149171
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleElliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circleuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
33-Tsujimoto.pdf
Розмір:
354.94 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: