Nonnegative Scalar Curvature and Area Decreasing Maps

dc.contributor.authorZhang, Weiping
dc.date.accessioned2025-12-15T15:31:48Z
dc.date.issued2020
dc.description.abstractLet (M, gᵀᴹ) be a noncompact complete spin Riemannian manifold of even dimension n, with kᵀᴹ denoting the associated scalar curvature. Let 𝑓: M → Sⁿ(1) be a smooth area decreasing map, which is locally constant near infinity and of nonzero degree. We show that if kᵀᴹ ≥ n(n−1) on the support of d𝑓, then inf(kᵀᴹ) < 0. This answers a question of Gromov. We use a simple deformation of the Dirac operator to prove the result. The odd-dimensional analogue is also presented.
dc.description.sponsorshipThe author would like to thank the referees for their careful reading and very helpful suggestions. This work was partially supported by NNSFC Grant no.11931007.
dc.identifier.citationNonnegative Scalar Curvature and Area Decreasing Maps. Weiping Zhang. SIGMA 16 (2020), 033, 7 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.033
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 53C27; 57R20; 58J20
dc.identifier.otherarXiv:1912.03649
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210717
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleNonnegative Scalar Curvature and Area Decreasing Maps
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
033-Zhang.pdf
Розмір:
335.56 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: