Поточечная оценка комонотонного приближения

dc.contributor.authorДзюбенко, Г.А.
dc.date.accessioned2020-02-10T20:17:16Z
dc.date.available2020-02-10T20:17:16Z
dc.date.issued1994
dc.description.abstractДоведено, що для неперервної на [- 1; 1 ] функції f(x) з обмеженою кількістю проміжків незростання і неспадання існує послідовність многочленів Pn(x), локально монотонних так само, як f(x) і |f(x)−Pn(x)|≤Cω₂(f;n⁻²+n⁻¹(√1−x²) , C — стала, яка залежить від довжини найменшого проміжку.uk_UA
dc.description.abstractWe prove that, for a continuous functionf(x) defined on the interval [−1,1] and having finitely many intervals where it is either nonincreasing or nondecreasing, one can always find a sequence of polynomialsP n (x) with the same local properties of monotonicity as the functionf(x) and such that ¦f(x)−P n (x) ¦≤Cω₂(f;n⁻²+n⁻¹√1−x²), whereC is a constant that depends on the length of the smallest interval.uk_UA
dc.identifier.citationПоточечная оценка комонотонного приближения / Г.А. Дзюбенко // Український математичний журнал. — 1994. — Т. 46, № 11. — С. 1467–1472. — Бібліогр.: 9 назв. — рос.uk_UA
dc.identifier.issn1027-3190
dc.identifier.udc517.5
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/164803
dc.language.isoruuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofУкраїнський математичний журнал
dc.statuspublished earlieruk_UA
dc.subjectСтаттіuk_UA
dc.titleПоточечная оценка комонотонного приближенияuk_UA
dc.title.alternativePointwise estimation of comonotone approximationuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Dziubenko.pdf
Розмір:
304.8 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: