𝐶-Vectors and Non-Self-Crossing Curves for Acyclic Quivers of Finite Type

dc.contributor.authorHong, Su Ji
dc.date.accessioned2025-12-25T13:23:34Z
dc.date.issued2021
dc.description.abstractLet 𝑄 be an acyclic quiver and k be an algebraically closed field. The indecomposable exceptional modules of the path algebra 𝑘𝑄 have been widely studied. The real Schur roots of the root system associated with 𝑄 are the dimension vectors of the indecomposable exceptional modules. It has been shown in [Nájera Chávez A., Int. Math. Res. Not. 2015 (2015), 1590-1600] that for acyclic quivers, the set of positive 𝑐-vectors and the set of real Schur roots coincide. To give a diagrammatic description of 𝑐-vectors, K-H. Lee and K. Lee conjectured that for acyclic quivers, the set of 𝑐-vectors and the set of roots corresponding to non-self-crossing admissible curves are equivalent as sets [Exp. Math., to appear, arXiv:1703.09113]. In [Adv. Math. 340 (2018), 855-882], A. Felikson and P. Tumarkin proved this conjecture for 2-complete quivers. In this paper, we prove a revised version of the Lee-Lee conjecture for acyclic quivers of type 𝐴, 𝐷, and 𝐸₆ and 𝐸₇.
dc.description.sponsorshipThe author would like to thank Kyungyong Lee for guidance and helpful discussions, Son Nyguen for helpful suggestions, and the referees for numerous helpful comments.
dc.identifier.citation𝐶-Vectors and Non-Self-Crossing Curves for Acyclic Quivers of Finite Type. Su Ji Hong. SIGMA 17 (2021), 010, 25 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.010
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 13F60; 16G20
dc.identifier.otherarXiv:2006.00627
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211178
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.title𝐶-Vectors and Non-Self-Crossing Curves for Acyclic Quivers of Finite Type
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
010-Hong.pdf
Розмір:
649.42 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: