On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
dc.contributor.author | Roffelsen, P. | |
dc.date.accessioned | 2019-02-19T18:23:01Z | |
dc.date.available | 2019-02-19T18:23:01Z | |
dc.date.issued | 2012 | |
dc.description.abstract | We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove this conjecture using an interlacing property between the roots of the Yablonskii-Vorob'ev polynomials. Furthermore we determine precisely the number of negative and the number of positive real roots of the nth Yablonskii-Vorob'ev polynomial. | uk_UA |
dc.identifier.citation | On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 34M55 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2012.099 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149188 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 099-Roffelsen.pdf
- Розмір:
- 282.7 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: