Про розклади скалярного оператора в суму самоспряжених операторів зі скінченним спектром

dc.contributor.authorРабанович, В.І.
dc.date.accessioned2020-02-14T14:55:15Z
dc.date.available2020-02-14T14:55:15Z
dc.date.issued2015
dc.description.abstractРассмотрена задача о классификации неэквивалентных представлений скалярного оператора λI в виде суммы k самосопряженных операторов с не более чем n₁,...,nk точками в спектрах. Доказано, что такая задача является *-дикой при некотором множестве спектров, если (n₁,...,nk) совпадает с одним из следующих наборов: (2,...,2) при k ≥ 5,(2,2,2,3),(2,11,11),(5,5,5), (4,6,6). Показано, что для k ≥ 5 и спектров операторов, состоящих из точек 0 и 1, такие классификационные задачи являются *-дикими при всех рациональных значениях λ ϵ [2,3].uk_UA
dc.description.abstractWe consider the problem of classification of nonequivalent representations of a scalar operator λI in the form of a sum of k self-adjoint operators with at most n₁,..., nk points in their spectra, respectively. It is shown that this problem is *-wild for some sets of spectra if (n₁,... ,nk ) coincides with one of the following k -tuples: (2, . . . , 2) for k ≥ 5, (2, 2, 2, 3), (2, 11, 11), (5, 5, 5), or (4, 6, 6). It is demonstrated that, for the operators with points 0 and 1 in the spectra and k ≥ 5, the classification problems are *-wild for every rational λ ϵ [2, 3].uk_UA
dc.identifier.citationПро розклади скалярного оператора в суму самоспряжених операторів зі скінченним спектром / В.І. Рабанович // Український математичний журнал. — 2015. — Т. 67, № 5. — С. 701–716. — Бібліогр.: 21 назв. — укр.uk_UA
dc.identifier.issn1027-3190
dc.identifier.udc517.98
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/165613
dc.language.isoukuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofУкраїнський математичний журнал
dc.statuspublished earlieruk_UA
dc.subjectСтаттіuk_UA
dc.titleПро розклади скалярного оператора в суму самоспряжених операторів зі скінченним спектромuk_UA
dc.title.alternativeOn Decompositions of a Scalar Operator into a Sum of Self-Adjoint Operators with Finite Spectrumuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
10-Rabanovych.pdf
Розмір:
294.32 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: