Frobenius 3-Folds via Singular Flat 3-Webs

dc.contributor.authorAgafonov, S.I.
dc.date.accessioned2019-02-18T17:34:30Z
dc.date.available2019-02-18T17:34:30Z
dc.date.issued2012
dc.description.abstractWe give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. This research was partially supported by MCT/CNPq/MEC/CAPES – Grant 552758/2011-6.uk_UA
dc.identifier.citationFrobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2012.078
dc.identifier.other2010 Mathematics Subject Classification: 53A60; 53D45; 34M35
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148653
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleFrobenius 3-Folds via Singular Flat 3-Websuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
078-Agafonov.pdf
Розмір:
492.6 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: