Frobenius 3-Folds via Singular Flat 3-Webs
dc.contributor.author | Agafonov, S.I. | |
dc.date.accessioned | 2019-02-18T17:34:30Z | |
dc.date.available | 2019-02-18T17:34:30Z | |
dc.date.issued | 2012 | |
dc.description.abstract | We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically. | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. This research was partially supported by MCT/CNPq/MEC/CAPES – Grant 552758/2011-6. | uk_UA |
dc.identifier.citation | Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2012.078 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 53A60; 53D45; 34M35 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/148653 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Frobenius 3-Folds via Singular Flat 3-Webs | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 078-Agafonov.pdf
- Розмір:
- 492.6 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: