Curvature-Dimension Condition Meets Gromov's 𝑛-Volumic Scalar Curvature

dc.contributor.authorDeng, Jialong
dc.date.accessioned2025-12-25T13:22:30Z
dc.date.issued2021
dc.description.abstractWe study the properties of the n-volumic scalar curvature in this note. Lott-Sturm-Villani's curvature-dimension condition CD(κ, 𝑛) was shown to imply Gromov's 𝑛-volumic scalar curvature ≥ 𝑛κ under an additional 𝑛-dimensional condition, and we show the stability of 𝑛-volumic scalar curvature ≥ κ with respect to smGH-convergence. Then we propose a new weighted scalar curvature on the weighted Riemannian manifold and show its properties.
dc.description.sponsorshipI am grateful to Thomas Schick for his help, the referees for their useful comments, and the funding from the China Scholarship Council.
dc.identifier.citationCurvature-Dimension Condition Meets Gromov's 𝑛-Volumic Scalar Curvature. Jialong Deng. SIGMA 17 (2021), 013, 20 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.013
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 53C23
dc.identifier.otherarXiv:2001.04087
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211175
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleCurvature-Dimension Condition Meets Gromov's 𝑛-Volumic Scalar Curvature
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
013-Deng.pdf
Розмір:
473.82 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: