Curvature-Dimension Condition Meets Gromov's 𝑛-Volumic Scalar Curvature
| dc.contributor.author | Deng, Jialong | |
| dc.date.accessioned | 2025-12-25T13:22:30Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | We study the properties of the n-volumic scalar curvature in this note. Lott-Sturm-Villani's curvature-dimension condition CD(κ, 𝑛) was shown to imply Gromov's 𝑛-volumic scalar curvature ≥ 𝑛κ under an additional 𝑛-dimensional condition, and we show the stability of 𝑛-volumic scalar curvature ≥ κ with respect to smGH-convergence. Then we propose a new weighted scalar curvature on the weighted Riemannian manifold and show its properties. | |
| dc.description.sponsorship | I am grateful to Thomas Schick for his help, the referees for their useful comments, and the funding from the China Scholarship Council. | |
| dc.identifier.citation | Curvature-Dimension Condition Meets Gromov's 𝑛-Volumic Scalar Curvature. Jialong Deng. SIGMA 17 (2021), 013, 20 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.013 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 53C23 | |
| dc.identifier.other | arXiv:2001.04087 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211175 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Curvature-Dimension Condition Meets Gromov's 𝑛-Volumic Scalar Curvature | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: