Quantitative K-Theory Related to Spin Chern Numbers

dc.contributor.authorLoring, T.A.
dc.date.accessioned2019-02-10T09:58:49Z
dc.date.available2019-02-10T09:58:49Z
dc.date.issued2014
dc.description.abstractWe examine the various indices defined on pairs of almost commuting unitary matrices that can detect pairs that are far from commuting pairs. We do this in two symmetry classes, that of general unitary matrices and that of self-dual matrices, with an emphasis on quantitative results. We determine which values of the norm of the commutator guarantee that the indices are defined, where they are equal, and what quantitative results on the distance to a pair with a different index are possible. We validate a method of computing spin Chern numbers that was developed with Hastings and only conjectured to be correct. Specifically, the Pfaffian-Bott index can be computed by the ''log method'' for commutator norms up to a specific constant.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. The author wishes to thank Matt Hastings and Fredy Vides for discussions, both useful and entertaining. Also he wishes to thank Robert Israel and Nick Weaver for help via MathOverflow. Finally, thanks are due to the anonymous referees, whose suggestions improved the paper, especially Sections 3 and 4. This work was partially supported by a grant from the Simons Foundation (208723 to Loring).uk_UA
dc.identifier.citationQuantitative K-Theory Related to Spin Chern Numbers / T.A. Loring // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 19M05; 46L60; 46L80
dc.identifier.otherDOI:10.3842/SIGMA.2014.077
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146609
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleQuantitative K-Theory Related to Spin Chern Numbersuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
40-Loring.pdf
Розмір:
975.05 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: