Period Matrices of Real Riemann Surfaces and Fundamental Domains

dc.contributor.authorGiavedoni, P.
dc.date.accessioned2019-02-21T07:09:45Z
dc.date.available2019-02-21T07:09:45Z
dc.date.issued2013
dc.description.abstractFor some positive integers g and n we consider a subgroup Gg,n of the 2g-dimensional modular group keeping invariant a certain locus Wg,n in the Siegel upper half plane of degree g. We address the problem of describing a fundamental domain for the modular action of the subgroup on Wg,n. Our motivation comes from geometry: g and n represent the genus and the number of ovals of a generic real Riemann surface of separated type; the locus Wg,n contains the corresponding period matrix computed with respect to some specific basis in the homology. In this paper we formulate a general procedure to solve the problem when g is even and n equals one. For g equal to two or four the explicit calculations are worked out in full detail.uk_UA
dc.description.sponsorshipResearch supported by SISSA under the PhD program in Mathematics and by the Austrian Science Fund (FWF) under Grant No. Y330. The author wishes to thank Professor Boris Dubrovin for kindly supervising this work and Professor Tamara Grava for valuable discussions. He also thanks the anonymous referees for significantly contributing to improve this article.uk_UA
dc.identifier.citationPeriod Matrices of Real Riemann Surfaces and Fundamental Domains / P. Giavedoni // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14P05; 57S30; 11F46
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2013.062
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149354
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titlePeriod Matrices of Real Riemann Surfaces and Fundamental Domainsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
062-Giavedoni.pdf
Розмір:
508.24 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: