Точні розв'язки спектральних задач для оператора Шрьодінгера на (–∞, ∞) з поліноміальним потенціалом, одержані FD-методом
dc.contributor.author | Макаров, В.Л. | |
dc.date.accessioned | 2017-11-23T16:04:31Z | |
dc.date.available | 2017-11-23T16:04:31Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Для знаходження точних розв'язків одновимірних спектральних задач для оператора Шрьодінгера з поліноміальним потенціалом вперше запропоновано функціонально-дискретний метод, що належить до чисельно-аналітичних методів і дає можливість, з одного боку, знаходити точні розв'язки розглядуваних задач (як результати граничних переходів), а з іншого боку, коли це неможливо, одержувати розв'язок із будь-якою наперед заданою точністю. Результати, зокрема, можуть бути використані для знаходження основних і збуджених енергетичних станів енергії ангармонічних осциляторів та осциляторів із подвійною потенціальною ямою. | uk_UA |
dc.description.abstract | Для нахождения точных решений одномерных спектральных задач для оператора Шрёдингера с полиномиальным потенциалом впервые применен функционально-дискретный метод, который принадлежит к численно-аналитическим методам и позволяет, с одной стороны, находить точные решения рассматриваемых задач (как результаты граничных переходов), а с другой стороны, когда это невозможно, получать решение с любой наперед заданной точностью. Результаты, в частности, могут быть использованы для нахождения основных и возбужденных энергетических состояний энергии ангармонических осцилляторов и осцилляторов с двойной потенциальной ямой. | uk_UA |
dc.description.abstract | The functionally-discrete method is applied for the first time to derive exact solutions of one-dimensional spect ral problems for the Schrödinger operator with polynomial potential. This numerical-analytical method is capable of obtaining the solution in a closed form (as a result of the limit transition) or approximating the solution to any predescribed accuracy, when the close-form solution is impossible. The results, in particular, can be used to find the ground and excited energy states of anharmonic oscillators and oscillators with the double-well potential. | uk_UA |
dc.identifier.citation | Точні розв'язки спектральних задач для оператора Шрьодінгера на (–∞, ∞) з поліноміальним потенціалом, одержані FD-методом / В.Л. Макаров // Доповіді Національної академії наук України. — 2017. — № 2. — С. 10-15. — Бібліогр.: 13 назв. — укр. | uk_UA |
dc.identifier.issn | 1025-6415 | |
dc.identifier.other | DOI: doi.org/10.15407/dopovidi2017.02.010 | |
dc.identifier.udc | 519.624.2 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/126422 | |
dc.language.iso | uk | uk_UA |
dc.publisher | Видавничий дім "Академперіодика" НАН України | uk_UA |
dc.relation.ispartof | Доповіді НАН України | |
dc.status | published earlier | uk_UA |
dc.subject | Математика | uk_UA |
dc.title | Точні розв'язки спектральних задач для оператора Шрьодінгера на (–∞, ∞) з поліноміальним потенціалом, одержані FD-методом | uk_UA |
dc.title.alternative | Точные решения спектральных задач для оператора Шрёдингера на (–∞, ∞) с полиномиальным потенциалом, полученные FD-методом | uk_UA |
dc.title.alternative | Exact solutions of spectral problems with the Schrödinger operator on (–∞, ∞) with polynomial potential obtained via the FD-method | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 02-Makarov.pdf
- Розмір:
- 127.46 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: