Theta Functions, Elliptic Hypergeometric Series, and Kawanaka's Macdonald Polynomial Conjecture

dc.contributor.authorLanger, R.
dc.contributor.authorSchlosser, M.J.
dc.contributor.authorWarnaar, S.O.
dc.date.accessioned2019-02-19T17:41:06Z
dc.date.available2019-02-19T17:41:06Z
dc.date.issued2009
dc.description.abstractWe give a new theta-function identity, a special case of which is utilised to prove Kawanaka's Macdonald polynomial conjecture. The theta-function identity further yields a transformation formula for multivariable elliptic hypergeometric series which appears to be new even in the one-variable, basic case.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany). We thank the anonymous referees for helpful comments. The work reported in this paper is supported by the Australian Research Council and by FWF Austrian Science Fund grants P17563-N13 and S9607.uk_UA
dc.identifier.citationTheta Functions, Elliptic Hypergeometric Series, and Kawanaka's Macdonald Polynomial Conjecture / R. Langer, M.J. Schlosser, S.O. Warnaar // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 24 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 05E05; 33D52; 33D67
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149148
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleTheta Functions, Elliptic Hypergeometric Series, and Kawanaka's Macdonald Polynomial Conjectureuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
55-Langer.pdf
Розмір:
311.56 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: