Harmonic Oscillator on the SO(2,2) Hyperboloid
dc.contributor.author | Petrosyan, D.R. | |
dc.contributor.author | Pogosyan, G.S. | |
dc.date.accessioned | 2019-02-13T17:51:31Z | |
dc.date.available | 2019-02-13T17:51:31Z | |
dc.date.issued | 2015 | |
dc.description.abstract | In the present work the classical problem of harmonic oscillator in the hyperbolic space H²₂: z²₀+z²₁−z²₂−z²₃=R² has been completely solved in framework of Hamilton-Jacobi equation. We have shown that the harmonic oscillator on H²₂, as in the other spaces with constant curvature, is exactly solvable and belongs to the class of maximally superintegrable system. We have proved that all the bounded classical trajectories are closed and periodic. The orbits of motion are ellipses or circles for bounded motion and ultraellipses or equidistant curve for infinite ones. | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. The work of G.P. was partially supported under the Armenian-Belarus grant Nr. 13RB-035 and Armenian national grant Nr. 13-1C288. | uk_UA |
dc.identifier.citation | Harmonic Oscillator on the SO(2,2) Hyperboloid / D.R. Petrosyan, G.S. Pogosyan // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 22E60; 37J15; 37J50; 70H20 | |
dc.identifier.other | DOI:10.3842/SIGMA.2015.096 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147158 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Harmonic Oscillator on the SO(2,2) Hyperboloid | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 096-Petrosyan.pdf
- Розмір:
- 2.85 MB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: