Algebra in the Stone-Čech compactification: applications to topologies on groups

dc.contributor.authorProtasov, I.V.
dc.date.accessioned2019-06-14T03:48:18Z
dc.date.available2019-06-14T03:48:18Z
dc.date.issued2009
dc.description.abstractFor every discrete group G, the Stone-Čech compactification βG of G has a natural structure of compact right topological semigroup. Assume that G is endowed with some left invariant topology I and let τ¯ be the set of all ultrafilters on G converging to the unit of G in I. Then τ¯ is a closed subsemigroup of βG. We survey the results clarifying the interplays between the algebraic properties of τ¯ and the topological properties of (G,I) and apply these results to solve some open problems in the topological group theory. The paper consists of 13 sections: Filters on groups, Semigroup of ultrafilters, Ideals, Idempotents, Equations, Continuity in βG and G∗, Ramsey-like ultrafilters, Maximality, Refinements, Resolvability, Potential compactness and ultraranks, Selected open questions.uk_UA
dc.identifier.citationAlgebra in the Stone-Čech compactification: applications to topologies on groups / I.V. Protasov // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 83–110. — Бібліогр.: 62 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification: 22A05, 22A15, 22A20, 05A18, 54A35, 54D80.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/153384
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleAlgebra in the Stone-Čech compactification: applications to topologies on groupsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
8-Protasov.pdf
Розмір:
287.59 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: