The Integration of Double-Infinite Toda Lattice by Means of Inverse Spectral Problem and Related Quetions

dc.contributor.authorBerezansky, Yu.
dc.date.accessioned2010-02-02T13:43:04Z
dc.date.available2010-02-02T13:43:04Z
dc.date.issued2009
dc.description.abstractThe solution of the Cauchy problem for differential-difference double-infinite Toda lattice by means of inverse spectral problem for semi-infinite block Jacobi matrix is given. Namely, we construct a simple linear system of three differential equations of first order whose solution gives the spectral matrix measure of the aforementioned Jacobi matrix. The solution of the Cauchy problem for the Toda lattice is given by the procedure of orthogonalization w.r.t. this spectral measure, i.e. by the solution of the inverse spectral problem for this Jacobi matrix.uk_UA
dc.identifier.citationThe integration of double-infinite Toda lattice by means of inverse spectral problem and related questions / Yu. Berezansky // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 2. — С. 101-136. — Бібліогр.: 48 назв. — англ.uk_UA
dc.identifier.issn1029-3531
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/5711
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.statuspublished earlieruk_UA
dc.titleThe Integration of Double-Infinite Toda Lattice by Means of Inverse Spectral Problem and Related Quetionsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
01-Berezansky.pdf
Розмір:
505.11 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
1.82 KB
Формат:
Item-specific license agreed upon to submission
Опис: