q -Difference Kac-Schwarz Operators in Topological String Theory

dc.contributor.authorTakasaki, K.
dc.contributor.authorNakatsu, T.
dc.date.accessioned2019-02-18T16:34:02Z
dc.date.available2019-02-18T16:34:02Z
dc.date.issued2017
dc.description.abstractThe perspective of Kac-Schwarz operators is introduced to the authors' previous work on the quantum mirror curves of topological string theory in strip geometry and closed topological vertex. Open string amplitudes on each leg of the web diagram of such geometry can be packed into a multi-variate generating function. This generating function turns out to be a tau function of the KP hierarchy. The tau function has a fermionic expression, from which one finds a vector |W⟩ in the fermionic Fock space that represents a point W of the Sato Grassmannian. |W⟩ is generated from the vacuum vector |0⟩ by an operator g on the Fock space. g determines an operator G on the space V=C((x)) of Laurent series in which W is realized as a linear subspace.uk_UA
dc.description.sponsorshipThe authors are grateful to Motohico Mulase for discussion and encouragement. We owe him the idea that an integrable hierarchy may be thought of as a mirror map. This work is partly supported by JSPS Kakenhi Grant No. 25400111 and No. 15K04912.uk_UA
dc.identifier.citationq -Difference Kac-Schwarz Operators in Topological String Theory / K. Takasaki, T. Nakatsu // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 67 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 37K10; 39A13; 81T30
dc.identifier.otherDOI:10.3842/SIGMA.2017.009
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148611
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleq -Difference Kac-Schwarz Operators in Topological String Theoryuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
009-Takasaki.pdf
Розмір:
547.06 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: