Estimation of a distribution function by an indirect sample

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

The problem of estimation of a distribution function is considered in the case where the observer has access only to a part of the indicator random values. Some basic asymptotic properties of the constructed estimates are studied. The limit theorems are proved for continuous functionals related to the estimation of F^n(x) in the space C[a, 1 - a], 0 < a < 1/2.
Розглянуто задачу оцінювання функції розподілу у випадку, коли спостерігач має доступ лише до деяких індикаторних випадкових значень. Вивчено деякі базові асимптотичні властивості побудованих оцінок. У статгі доведено граничні теореми для неперервних функціоналів щодо оцінки Fn(x) у просторі C[a,1−a],0 < a < 1/2.

Опис

Теми

Статті

Цитування

Estimation of a distribution function by an indirect sample / P. Babilua, E. Nadaraya, G. Sokhadze // Український математичний журнал. — 2010. — Т. 62, № 12. — С. 1642–1658. — Бібліогр.: 5 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced