On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
dc.contributor.author | Kharazishvili, A.B. | |
dc.date.accessioned | 2009-12-03T16:35:43Z | |
dc.date.available | 2009-12-03T16:35:43Z | |
dc.date.issued | 2008 | |
dc.description.abstract | For some natural classes of topological vector spaces, we show the absolute nonmeasurability of Minkowski’s sum of certain two universal measure zero sets. This result can be considered as a strong form of the classical theorem of Sierpinski [8] stating the existence of two Lebesgue measure zero subsets of the Euclidean space, whose Minkowski’s sum is not Lebesgue measurable. | en_US |
dc.identifier.citation | On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space / A.B. Kharazishvili // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 35–41. — Бібліогр.: 22 назв.— англ. | en_US |
dc.identifier.issn | 0321-3900 | |
dc.identifier.udc | 519.21 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/4550 | |
dc.language.iso | en | en_US |
dc.publisher | Інститут математики НАН України | en_US |
dc.status | published earlier | en_US |
dc.title | On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space | en_US |
dc.type | Article | en_US |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 2008_14_2_5.pdf
- Розмір:
- 177.83 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 1.82 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: