Алгоритм обучения нечеткого классификатора с использованием генетических процедур

dc.contributor.authorНовоселова, Н.А.
dc.contributor.authorТом, И.Э.
dc.date.accessioned2014-03-31T11:21:09Z
dc.date.available2014-03-31T11:21:09Z
dc.date.issued2011
dc.description.abstractВ статье рассматривается новый алгоритм обучения нечеткого классификатора, позволяющий с помощью генетических процедур обучать одновременно как базу правил, так и базу данных нечеткого классификатора (параметры функций принадлежности элементов предпосылки правила). Специально разработанные генетические процедуры позволяют параллельно оптимизировать несколько критериев, отвечающих за точность, интерпретируемость и компактность нечеткого классификатора. Сравнительное тестирование разработанного алгоритма с зарубежными аналогами на тестовом наборе данных Wine показало его преимущество в части интерпретируемости при сохранении высокой точности классификации.uk_UA
dc.description.abstractРозглядається новий алгоритм навчання нечіткого класифікатора, що дозволяє за допомогою генетичних процедур навчати одночасно як базу правил, так і базу даних нечіткого класифікатора (параметри функцій приналежності елементів передумови правила). Спеціально розроблені генетичні процедури дозволяють паралельно оптимізувати кілька критеріїв, відповідальних за точність, інтерпретованість і компактність нечіткого класифікатора. Порівняльне тестування розробленого алгоритму із закордонними аналогами на тестовому наборі даних Wine показало його перевагу у частині інтерпретованості при збереженні високої точності класифікації.uk_UA
dc.description.abstractIn the paper the new learning algorithm of fuzzy classifier (FK) is proposed, which uses the genetic procedures to simultaneously adjust both the rule base and data base (the parameters of membership function of rule premises) of FK. The specially developed genetic procedures permit to optimize in parallel several criteria, responsible for classification accuracy, simplicity and compactness of fuzzy classifier. The comparative analysis of developed algorithm on the testing dataset Wine shows its advantage over foreign analogs according to interpretability of results preserving the high classification accuracy.uk_UA
dc.identifier.citationАлгоритм обучения нечеткого классификатора с использованием генетических процедур / Н.А. Новоселова, И.Э. Том // Штучний інтелект. — 2011. — № 1. — С. 218-228. — Бібліогр.: 5 назв. — рос.uk_UA
dc.identifier.issn1561-5359
dc.identifier.udc004.8
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/58810
dc.language.isoruuk_UA
dc.publisherІнститут проблем штучного інтелекту МОН України та НАН Україниuk_UA
dc.relation.ispartofШтучний інтелект
dc.statuspublished earlieruk_UA
dc.subjectМоделирование объектов и процессовuk_UA
dc.titleАлгоритм обучения нечеткого классификатора с использованием генетических процедурuk_UA
dc.title.alternativeАлгоритм навчання нечіткого класифікатора з використанням генетичних процедурuk_UA
dc.title.alternativeLearning Algorithm of Fuzzy Classifier with Genetic Proceduresuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
26-Novoselova.pdf
Розмір:
301.33 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
441 B
Формат:
Item-specific license agreed upon to submission
Опис: