Simple Vectorial Lie Algebras in Characteristic 2 and their Superizations

dc.contributor.authorBouarroudj, Sofiane
dc.contributor.authorGrozman, Pavel
dc.contributor.authorLebedev, Alexei
dc.contributor.authorLeites, Dimitry
dc.contributor.authorShchepochkina, Irina
dc.date.accessioned2025-12-17T14:27:54Z
dc.date.issued2020
dc.description.abstractWe overview the classifications of simple finite-dimensional modular Lie algebras. In characteristic 2, their list is wider than that in other characteristics; e.g., it contains desuperizations of modular analogs of complex simple vectorial Lie superalgebras. We consider odd parameters of deformations. For all 15 Weisfeiler gradings of the 5 exceptional families, and one Weisfeiler grading for each of 2 serial simple complex Lie superalgebras (with 2 exceptional subseries), we describe their characteristic-2 analogs - new simple Lie algebras. Descriptions of several of these analogs, and of their desuperizations, are far from obvious. One of the exceptional simple vectorial Lie algebras is a previously unknown deform (the result of a deformation) of the characteristic-2 version of the Lie algebra of divergence-free vector fields; this is a new simple Lie algebra with no analogs in characteristics distinct from 2. In characteristic 2, every simple Lie superalgebra can be obtained from a simple Lie algebra by one of the two methods described in arXiv:1407.1695. Most of the simple Lie superalgebras thus obtained from simple Lie algebras we describe here are new.
dc.description.sponsorshipWe thank S. Skryabin for providing us with [69] and elucidations. We heartily thank the referees, especially the one who wrote 26 pages of constructive comments, for their help; their suggestions considerably improved and clarified the exposition. S.B. and D.L. were partly supported by the grant AD 065 NYUAD.
dc.identifier.citationSimple Vectorial Lie Algebras in Characteristic 2 and their Superizations. Sofiane Bouarroudj, Pavel Grozman, Alexei Lebedev, Dimitry Leites and Irina Shchepochkina. SIGMA 16 (2020), 089, 101 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.089
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 17B50;17B20;70F25
dc.identifier.otherarXiv:1510.07255
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210759
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleSimple Vectorial Lie Algebras in Characteristic 2 and their Superizations
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
089-Bouarroudj.pdf
Розмір:
1.31 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: