On a quasistability radius for multicriteria integer linear programming problem of finding extremum solutions

dc.contributor.authorEmelichev, V.
dc.contributor.authorNikulin, Yu.
dc.date.accessioned2021-11-17T14:04:35Z
dc.date.available2021-11-17T14:04:35Z
dc.date.issued2019
dc.description.abstractWe consider a multicriteria integer linear programming problem with a targeting set of optimal solutions given by the set of all individual criterion minimizers (extrema). In this study, the lower and upper attainable bounds on the quasistability radius of the set of extremum solutions are obtained when solution and criterion spaces are endowed with different Hlder’s norms. As a corollary, an analytical formula for the quasistability radius is obtained for the case where criterion space is endowed with Chebyshev’s norm. Some computational challenges are also discussed.uk_UA
dc.description.abstractРассматривается многокритериальная задача целочисленного линейного программирования с целевым набором оптимальных решений, каждое из которых минимизирует хотя бы один из критериев, т.е. является экстремумом. В данной работе нижние и верхние достижимые оценки радиуса квазиустойчивости множества экстремальных решений доказаны в ситуации, когда в пространствах решений и критериев заданы различные нормы Гёльдера. В качестве следствия получена аналитическая формула радиуса квазиустойчивости для случая, когда в пространстве критериев задана норма Чебышёва. В работе также кратко обсуждены некоторые вопросы, связанные с вычислимостью.uk_UA
dc.description.abstractРозглянуто багатокритерійну задачу цілочисельного лінійного програмування з цільовим набором оптимальних розв’язків, кожен з яких мінімізує хоча б один з критеріїв, тобто є екстремумом. Нижні та верхні досяжні оцінки радіуса квазістійкості множини екстремальних розв’язків доведено у ситуації, коли у просторах розв’язків та критеріїв задані різні норми Гeльдера. Як наслідок отримано аналітичну формулу для радіусу квазістійкості у випадку, коли у просторі критеріїв задана норма Чебишова. У роботі також коротко обговорюються деякі питання пов’язані з обчислюванністю.uk_UA
dc.identifier.citationOn a quasistability radius for multicriteria integer linear programming problem of finding extremum solutions / V. Emelichev, Yu. Nikulin // Кибернетика и системный анализ. — 2019. — Т. 55, № 6. — С. 80-89. — Бібліогр.: 46 назв. — англ.uk_UA
dc.identifier.issn1019-5262
dc.identifier.udc519.8
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/181440
dc.language.isoenuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectСистемний аналізuk_UA
dc.titleOn a quasistability radius for multicriteria integer linear programming problem of finding extremum solutionsuk_UA
dc.title.alternativeО радиусе квазиустойчивости многокритериальной задачи целочисленного линейного программирования нахождения экстремальных решенийuk_UA
dc.title.alternativeПро радіус квазістійкості для багатокритерійної цілочисельної задачі лінійного програмування про знаходження екстремальних розв’язкіuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
08-Emelichev.pdf
Розмір:
108.73 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: