Algebra in superextensions of groups, II: cancelativity and centers
dc.contributor.author | Banakh, T. | |
dc.contributor.author | Gavrylkiv, V. | |
dc.date.accessioned | 2019-06-14T03:34:04Z | |
dc.date.available | 2019-06-14T03:34:04Z | |
dc.date.issued | 2008 | |
dc.description.abstract | Given a countable group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We show that the subsemigroup λ∘(X) of free maximal linked systems contains an open dense subset of right cancelable elements. Also we prove that the topological center of λ(X) coincides with the subsemigroup λ∙(X) of all maximal linked systems with finite support. This result is applied to show that the algebraic center of λ(X) coincides with the algebraic center of X provided X is countably infinite. On the other hand, for finite groups X of order 3≤|X|≤5 the algebraic center of λ(X) is strictly larger than the algebraic center of X. | uk_UA |
dc.identifier.citation | Algebra in superextensions of groups, II: cancelativity and centers / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 1–14. — Бібліогр.: 10 назв. — англ. | uk_UA |
dc.identifier.issn | 1726-3255 | |
dc.identifier.other | 2000 Mathematics Subject Classification: 20M99, 54B20. | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/153356 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Algebra and Discrete Mathematics | |
dc.status | published earlier | uk_UA |
dc.title | Algebra in superextensions of groups, II: cancelativity and centers | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: