Billiards and Tilting Characters for SL₃

dc.contributor.authorLusztig, G.
dc.contributor.authorWilliamson, G.
dc.date.accessioned2025-11-21T19:02:20Z
dc.date.issued2018
dc.description.abstractWe formulate a conjecture for the second generation characters of indecomposable tilting modules for SL₃. This gives many new conjectural decomposition numbers for symmetric groups. Our conjecture can be interpreted as saying that these characters are governed by a discrete dynamical system ("billiards bouncing in alcoves"). The conjecture implies that decomposition numbers for symmetric groups display (at least) exponential growth.
dc.description.sponsorshipWe would like to thank the anonymous referees for their comments.
dc.identifier.citationBilliards and Tilting Characters for SL₃ / G. Lusztig, G. Williamson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 26 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2018.015
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 20C20; 17B10; 20C30
dc.identifier.otherarXiv: 1703.05898
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/209449
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleBilliards and Tilting Characters for SL₃
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
015-Lusztig.pdf
Розмір:
649.01 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: