On the lattice of weak topologies on the bicyclic monoid with adjoined zero

dc.contributor.authorBardyla, S.
dc.contributor.authorGutik, O.
dc.date.accessioned2023-03-05T17:20:25Z
dc.date.available2023-03-05T17:20:25Z
dc.date.issued2020
dc.description.abstractA Hausdorff topology τ on the bicyclic monoid with adjoined zero C⁰ is called weak if it is contained in the coarsest inverse semigroup topology on C⁰. We show that the lattice W of all weak shift-continuous topologies on C⁰ is isomorphic to the lattice SIF¹×SIF¹ where SIF¹ is the set of all shift-invariant filters on ! with an attached element 1 endowed with the following partial order: F ≤ G if and only if G = 1 or F ⊂ G. Also, we investigate cardinal characteristics of the lattice W. In particular, we prove that W contains an antichain of cardinality 2ᶜ and a well-ordered chain of cardinality c. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type t.uk_UA
dc.description.sponsorshipThe work of the author is supported by the Austrian Science Fund FWF (grant I3709 N35).uk_UA
dc.identifier.citationOn the lattice of weak topologies on the bicyclic monoid with adjoined zero / S. Bardyla, O. Gutik // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 26–43. — Бібліогр.: 30 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.otherDOI:10.12958/adm1459
dc.identifier.other2010 MSC: 22A15, 06B23
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/188551
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleOn the lattice of weak topologies on the bicyclic monoid with adjoined zerouk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
04-Bardyla.pdf
Розмір:
423.28 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: