On the lattice of weak topologies on the bicyclic monoid with adjoined zero
| dc.contributor.author | Bardyla, S. | |
| dc.contributor.author | Gutik, O. | |
| dc.date.accessioned | 2023-03-05T17:20:25Z | |
| dc.date.available | 2023-03-05T17:20:25Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | A Hausdorff topology τ on the bicyclic monoid with adjoined zero C⁰ is called weak if it is contained in the coarsest inverse semigroup topology on C⁰. We show that the lattice W of all weak shift-continuous topologies on C⁰ is isomorphic to the lattice SIF¹×SIF¹ where SIF¹ is the set of all shift-invariant filters on ! with an attached element 1 endowed with the following partial order: F ≤ G if and only if G = 1 or F ⊂ G. Also, we investigate cardinal characteristics of the lattice W. In particular, we prove that W contains an antichain of cardinality 2ᶜ and a well-ordered chain of cardinality c. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type t. | uk_UA |
| dc.description.sponsorship | The work of the author is supported by the Austrian Science Fund FWF (grant I3709 N35). | uk_UA |
| dc.identifier.citation | On the lattice of weak topologies on the bicyclic monoid with adjoined zero / S. Bardyla, O. Gutik // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 26–43. — Бібліогр.: 30 назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.other | DOI:10.12958/adm1459 | |
| dc.identifier.other | 2010 MSC: 22A15, 06B23 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/188551 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | On the lattice of weak topologies on the bicyclic monoid with adjoined zero | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 04-Bardyla.pdf
- Розмір:
- 423.28 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: