A Note on the Rotationally Symmetric SO(4) Euler Rigid Body

dc.contributor.authorFalqui, G.
dc.date.accessioned2019-02-16T08:56:48Z
dc.date.available2019-02-16T08:56:48Z
dc.date.issued2007
dc.description.abstractWe consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. This work was partially supported by the European Community through the FP6 Marie Curie RTN ENIGMA (Contract number MRTN-CT-2004-5652), and by the European Science Foundation project MISGAM. Thanks are due to the anonymous referees for their useful remarks.uk_UA
dc.identifier.citationA Note on the Rotationally Symmetric SO(4) Euler Rigid Body / G. Falqui // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 37K10; 70H20; 14H70
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147829
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA Note on the Rotationally Symmetric SO(4) Euler Rigid Bodyuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
32-Falqui.pdf
Розмір:
247.98 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: