Completely Integrable Systems Associated with Classical Root Systems

dc.contributor.authorOshima, T.
dc.date.accessioned2019-02-14T14:46:51Z
dc.date.available2019-02-14T14:46:51Z
dc.date.issued2007
dc.description.abstractWe study integrals of completely integrable quantum systems associated with classical root systems. We review integrals of the systems invariant under the corresponding Weyl group and as their limits we construct enough integrals of the non-invariant systems, which include systems whose complete integrability will be first established in this paper. We also present a conjecture claiming that the quantum systems with enough integrals given in this note coincide with the systems that have the integrals with constant principal symbols corresponding to the homogeneous generators of the Bn-invariants. We review conditions supporting the conjecture and give a new condition assuring it.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’.uk_UA
dc.identifier.citationCompletely Integrable Systems Associated with Classical Root Systems / T. Oshima // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 41 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 81R12; 70H06
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147369
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleCompletely Integrable Systems Associated with Classical Root Systemsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
61-Oshima.pdf
Розмір:
554.22 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: