Quasi-Polynomials and the Singular [Q,R] = 0 Theorem
| dc.contributor.author | Loizides, Yi. | |
| dc.date.accessioned | 2025-12-05T09:25:41Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | In this short note, we revisit the 'shift-desingularization' version of the [Q, R] = 0 theorem for possibly singular symplectic quotients. We take as a starting point an elegant proof due to Szenes-Vergne of the quasi-polynomial behavior of the multiplicity as a function of the tensor power of the prequantum line bundle. We use the Berline-Vergne index formula and the stationary phase expansion to compute the quasi-polynomial, adapting an early approach of Meinrenken. | |
| dc.description.sponsorship | I thank M. Vergne and E. Meinrenken for helpful conversations. I thank the referees for their helpful comments and suggestions that improved the article. | |
| dc.identifier.citation | Quasi-Polynomials and the Singular [Q,R] = 0 Theorem / Yi. Loizides // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 15 назв. — англ. | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2019.090 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 53D20; 53D50 | |
| dc.identifier.other | arXiv: 1907.06113 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/210298 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Quasi-Polynomials and the Singular [Q,R] = 0 Theorem | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 090-Loizides.pdf
- Розмір:
- 417.2 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: