Branching Rules for Koornwinder Polynomials with One Column Diagrams and Matrix Inversions
| dc.contributor.author | Hoshino, Ayumu | |
| dc.contributor.author | Shiraishi, Jun'ichi | |
| dc.date.accessioned | 2025-12-17T14:30:51Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | We present an explicit formula for the transition matrix 𝒞 from the type 𝐵𝐶ₙ Koornwinder polynomials 𝘗₍₁ᵣ₎(𝑥|𝑎, 𝘣, c, 𝑑|𝑞, 𝘵) with one column diagrams, to the type 𝐵𝐶ₙ monomial symmetric polynomials m₍₁ᵣ₎(𝑥). The entries of the matrix C enjoy a set of four-term recursion relations. These recursions provide us with the branching rules for the Koornwinder polynomials with one column diagrams, namely the restriction rules from 𝐵𝐶ₙ to 𝐵𝐶ₙ₋₁. To have a good description of the transition matrices involved, we introduce the following degeneration scheme of the Koornwinder polynomials: 𝘗₍₁ᵣ₎(𝑥|𝑎, 𝘣, c, 𝑑|𝑞, 𝘵) ⟷ 𝘗₍₁ᵣ₎(𝑥|𝑎, −𝑎, c, 𝑑|𝑞, 𝘵) ⟷ 𝘗₍₁ᵣ₎(𝑥|𝑎, −𝑎, c, −c|𝑞, 𝘵) ⟷ 𝘗₍₁ᵣ₎(𝑥|𝘵¹/²c, −𝘵¹/²c, c, −c|𝑞, 𝘵) ⟷ 𝘗₍₁ᵣ₎(𝑥|𝘵¹/², −𝘵¹/², 1, −1|𝑞, 𝘵). We prove that the transition matrices associated with each of these degeneration steps are given in terms of the matrix inversion formula of Bressoud. As an application, we give an explicit formula for the Kostka polynomials of type Bₙ, namely the transition matrix from the Schur polynomials 𝘗⁽ᴮⁿ 'ᴮⁿ ⁾₍₁ᵣ₎(𝑥|𝑞; 𝑞, 𝑞) to the Hall-Littlewood polynomials 𝘗⁽ᴮⁿ 'ᴮⁿ ⁾₍₁ᵣ₎(𝑥|𝘵; 0, 𝘵). We also present a conjecture for the asymptotically free eigenfunctions of the 𝐵ₙ 𝑞-Toda operator, which can be regarded as a branching formula from the 𝐵ₙ 𝑞-Toda eigenfunction restricted to the 𝘈ₙ₋₁ 𝑞-Toda eigenfunctions. | |
| dc.description.sponsorship | Research of A.H. is supported by JSPS KAKENHI (Grant Numbers 16K05186 and 19K03530). Research of J.S. is supported by JSPS KAKENHI (Grant Numbers 15K04808, 19K03512, 16K05186, and 19K03530). The authors thank M. Noumi and L. Rybnikov for stimulating discussion. They also thank the anonymous referees for valuable comments and suggestions, including the proof of Theorem 3.3 based on Bressoud's matrix inversion. | |
| dc.identifier.citation | Branching Rules for Koornwinder Polynomials with One Column Diagrams and Matrix Inversions. Ayumu Hoshino and Jun'ichi Shiraishi. SIGMA 16 (2020), 084, 28 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2020.084 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 33D52; 33D45 | |
| dc.identifier.other | arXiv:2002.02148 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/210764 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Branching Rules for Koornwinder Polynomials with One Column Diagrams and Matrix Inversions | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 084-Hoshino.pdf
- Розмір:
- 558.39 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: