Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics

dc.contributor.authorSchuch, D.
dc.contributor.authorMoshinsky, M.
dc.date.accessioned2019-02-19T13:08:49Z
dc.date.available2019-02-19T13:08:49Z
dc.date.issued2008
dc.description.abstractFor classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.uk_UA
dc.description.sponsorshipBoth authors would like to express their gratitude to the Instituto de F´ısica, UNAM, that made possible the visit of the first author to Mexico. One of the authors (D.S.) would like to thank Dr. Robert Berger for valuable and stimulating discussions.uk_UA
dc.identifier.citationWigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics / D. Schuch, M. Moshinsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 37J15; 81Q05; 81R05; 81S30
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149027
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleWigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanicsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
54-Schuch.pdf
Розмір:
232.58 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: