Методы предварительной обработки изображений на основе нейропарадигмы Модель геометрических преобразований

dc.contributor.authorТкаченко, Р.О.
dc.contributor.authorТкаченко, П.Р.
dc.contributor.authorИзонин, И.В.
dc.contributor.authorБатюк, Д.А.
dc.date.accessioned2017-10-12T12:38:37Z
dc.date.available2017-10-12T12:38:37Z
dc.date.issued2017
dc.description.abstractПредложен метод изменения разрешения изображений на основе машинного обучения. Инструментом для обучения избраны нейроподобные структуры парадигмы Модель геометрических преобразований, поскольку они уменьшают вычислительные и временные ресурсы работы подобных методов и предоставляют возможность быстрого автоматического переобучения. Проведен ряд имитационных экспериментов на разных изображениях, а также сравнение эффективности работы разработанного метода с существующим.uk_UA
dc.description.abstractЗапропоновано метод зміни роздільної здатності зображень на основі машинного навчання. Інструментом для навчання обрано нейроподібні структури парадигми Модель геометричних перетворень, оскільки вони зменшують обчислювальні і часові ресурси роботи подібних методів і надають можливість швидкого автоматичного перенавчання. Проведено ряд імітаційних експериментів на різних зображеннях, а також порівняння ефективності роботи розробленого методу з ефективністю за існуючим.uk_UA
dc.description.sponsorshipThere are many tools for the machine learning implementation. In this article the authors use the tools of computational intelligence – artificial neural networks. This apparatus allows the rapid and efficient learning. The use of such tools for solving the problem of improving the quality of digital images is not new. However, the existing methods are based on the classical neural networks have the significant drawbacks. It imposes a number of restrictions. In the article the authors use a new paradigm of building artificial neural networks. It is based on the geometric transformation machine. Exactly this advantage is providing the possibility of solution the problem of improving the quality of digital images in online mode. The authors describe the topology of the neural network of solution to the problem of improving the quality of digital images, the basic steps of the training algorithm. The proposed learning algorithm is different from the existing ones by speed and accuracy, It provides an effective solution of the problem of increasing the quality of the digital images. Also, the authors in detail describe the process of applying trained neural network to solve the problem.uk_UA
dc.identifier.citationМетоды предварительной обработки изображений на основе нейропарадигмы Модель геометрических преобразований / Р.О. Ткаченко, П.Р. Ткаченко, И.В. Изонин, Д.А. Батюк // Управляющие системы и машины. — 2017. — № 1. — С. 59-67. — Бібліогр.: 15 назв. — рос.uk_UA
dc.identifier.issn0130-5395
dc.identifier.udc004.89 + 004.932
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/124951
dc.language.isoruuk_UA
dc.publisherМіжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН Україниuk_UA
dc.relation.ispartofУправляющие системы и машины
dc.statuspublished earlieruk_UA
dc.subjectМетоды и средства обработки данных и знанийuk_UA
dc.titleМетоды предварительной обработки изображений на основе нейропарадигмы Модель геометрических преобразованийuk_UA
dc.title.alternativeMethods of Image Pre-Processing Based on Neuro-Paradigm of Geometric Transformation Modeluk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Tkachenko.pdf
Розмір:
560.81 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: