Contact Geometry of Curves

dc.contributor.authorVassiliou, P.J.
dc.date.accessioned2019-02-19T17:27:30Z
dc.date.available2019-02-19T17:27:30Z
dc.date.issued2009
dc.description.abstractCartan's method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group G. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the G-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equivariant method of Fels and Olver. Next, the contact geometry of curves in general Riemannian manifolds (M,g) is described. For the special case in which the isometries of (M,g) act transitively, it is shown that the contact geometry provides an explicit algorithmic construction of the differential invariants for curves in M. The inputs required for the construction consist only of the metric g and a parametrisation of structure group SO(n); the group action is not required and no integration is involved. To illustrate the algorithm we explicitly construct complete sets of differential invariants for curves in the Poincaré half-space H3 and in a family of constant curvature 3-metrics. It is conjectured that similar results are possible in other Cartan geometries.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. I am indebted to the anonymous referees for insightful comments and for corrections which greatly improved the paper. Any remaining errors are mine.uk_UA
dc.identifier.citationContact Geometry of Curves / P.J. Vassiliou // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 30 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 53A35; 53A55; 58A15; 58A20; 58A30
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149111
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleContact Geometry of Curvesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
98-Vassiliou.pdf
Розмір:
379.15 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: