Algebraic Bethe Ansatz for the XXZ Gaudin Models with Generic Boundary

dc.contributor.authorCrampe, N.
dc.date.accessioned2019-02-19T19:41:21Z
dc.date.available2019-02-19T19:41:21Z
dc.date.issued2017
dc.description.abstractWe solve the XXZ Gaudin model with generic boundary using the modified algebraic Bethe ansatz. The diagonal and triangular cases have been recovered in this general framework. We show that the model for odd or even lengths has two different behaviors. The corresponding Bethe equations are computed for all the cases. For the chain with even length, inhomogeneous Bethe equations are necessary. The higher spin Gaudin models with generic boundary is also treated.uk_UA
dc.description.sponsorshipI thank P. Baseilhac, S. Belliard and V. Caudrelier for their interest. This work has been done during the stay of the author at the “Laboratoire de Math´ematiques et Physique Th´eorique CNRS/UMR 7350, Universit´e de Tours”. I thank warmly the LMPT for hospitality.uk_UA
dc.identifier.citationAlgebraic Bethe Ansatz for the XXZ Gaudin Models with Generic Boundary / N. Crampe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 44 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 81R12; 17B80; 37J35
dc.identifier.otherDOI:10.3842/SIGMA.2017.094
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149276
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleAlgebraic Bethe Ansatz for the XXZ Gaudin Models with Generic Boundaryuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
094-Crampe.pdf
Розмір:
390.07 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: