Higher Rank Ẑ and FK

dc.contributor.authorPark, Sunghyuk
dc.date.accessioned2025-12-15T15:25:29Z
dc.date.issued2020
dc.description.abstractWe study q-series-valued invariants of 3-manifolds that depend on the choice of a root system 𝐺. This is a natural generalization of the earlier works by Gukov-Pei-Putrov-Vafa [arXiv:1701.06567] and Gukov-Manolescu [arXiv:1904.06057], where they focused on the 𝐺 = SU(2) case. Although a full mathematical definition for these ''invariants'' is lacking yet, we define Ẑ𝐺 for negative definite plumbed 3-manifolds and FGK for torus knot complements. As in the 𝐺 = SU(2) case by Gukov and Manolescu, there is a surgery formula relating FGK to Ẑ𝐺 of a Dehn surgery on the knot K. Furthermore, specializing to symmetric representations, FGK satisfies a recurrence relation given by the quantum A-polynomial for symmetric representations, which hints that there might be HOMFLY-PT analogues of these 3-manifold invariants.
dc.description.sponsorshipI would like to thank my advisor Sergei Gukov for his invaluable guidance, as well as Francesca Ferrari, Sarah Harrison, Ciprian Manolescu, and Nikita Sopenko for helpful conversations. Special thanks go to Nikita Sopenko for his kind help with Mathematica coding. I would also like to thank the anonymous referees for their useful comments that helped to improve the paper. The author was supported by the Kwanjeong Educational Foundation.
dc.identifier.citationHigher Rank Ẑ and FK. Sunghyuk Park. SIGMA 16 (2020), 044, 17 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.044
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 57K16; 57K31; 81R50
dc.identifier.otherarXiv:1909.13002
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210706
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleHigher Rank Ẑ and FK
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
044-Park.pdf
Розмір:
510.01 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: