Local Proof of Algebraic Characterization of Free Actions

dc.contributor.authorBaum, P.F.
dc.contributor.authorHajac, P.M.
dc.date.accessioned2019-02-10T19:06:55Z
dc.date.available2019-02-10T19:06:55Z
dc.date.issued2014
dc.description.abstractLet G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action of G on C(X). We prove that the action of G on X is free if and only if the canonical map PG(X)⊗C(X/G)PG(X)→PG(X)⊗O(G) is bijective. Here both tensor products are purely algebraic, and O(G) denotes the Hopf algebra of ''polynomial'' functions on G.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. We thank the referees for the careful attention they have given to this paper. This work was partially supported by NCN grant 2011/01/B/ST1/06474. P.F. Baum was partially supported by NSF grant DMS 0701184.uk_UA
dc.identifier.citationLocal Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 22C05; 55R10; 57S05; 57S10
dc.identifier.otherDOI:10.3842/SIGMA.2014.060
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146694
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleLocal Proof of Algebraic Characterization of Free Actionsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
57-Baum.pdf
Розмір:
337.25 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: