Точное число эллиптических кривых в канонической форме, изоморфных кривым Эдвардса над простым полем

dc.contributor.authorБессалов, А.В.
dc.contributor.authorКовальчук, Л.В.
dc.date.accessioned2017-10-05T06:07:57Z
dc.date.available2017-10-05T06:07:57Z
dc.date.issued2015
dc.description.abstractНайдены необходимые и достаточные условия для параметров кривой в канонической форме с двумя точками четвертого порядка. Доказаны две леммы о квадратичных вычетах в конечном поле с использованием схемы Гаусса для квадратичных вычетов и невычетов. На их основе получены точные формулы расчета числа эллиптических кривых с ненулевыми параметрами а и b и двумя точками четвертого порядка, изоморфных кривым Эдвардса над простым полем. Доказано, что для больших полей доля таких кривых близка к 1/4.uk_UA
dc.description.abstractЗнайдено необхідні та достатні умови для параметрів кривої у канонічній формі з двома точками четвертого порядку. Доведено дві леми про квадратичні лишки у скінченному полі з використанням схеми Гауcса для квадратичних лишків та нелишків. На їх основі отримано точні формули обчислення кількості еліптичних кривих з ненульовими параметрами а та b і двома точками четвертого порядку, ізоморфних кривим Едвардса над простим полем. Доведено, що для великих полів частка таких кривих близька до 1/4.uk_UA
dc.description.abstractThe necessary and sufficient conditions for the parameters of the curve in the canonical form with two points of order 4 are found. Two lemmas are proved about the properties of quadratic residues, using the Gauss scheme for quadratic residues and non-residues. Based on this lemmas, the exact formulas are derived for calculating the number of elliptic curves with non-zero parameters a and b and two points of order 4 that are isomorphic to Edwards curves over the prime field. It is proved that for large fields the share of such curves is close to 1/4.uk_UA
dc.identifier.citationТочное число эллиптических кривых в канонической форме, изоморфных кривым Эдвардса над простым полем / А.В. Бессалов, Л.В. Ковальчук // Кибернетика и системный анализ. — 2015. — Т. 51, № 2. — С. 3-12. — Бібліогр.: 7 назв. — рос.uk_UA
dc.identifier.issn0023-1274
dc.identifier.udc681.3.06
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/124772
dc.language.isoruuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectКибернетикаuk_UA
dc.titleТочное число эллиптических кривых в канонической форме, изоморфных кривым Эдвардса над простым полемuk_UA
dc.title.alternativeТочна кількість еліптичних кривих у канонічній формі, ізоморфних кривим Едвардса над простим полемuk_UA
dc.title.alternativeThe exact number of elliptic curves in the canonical form, which are isomorphic to Edwards curves over the prime fielduk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
01-Bessalov.pdf
Розмір:
100.56 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: