Characterization of Chebyshev Numbers
dc.contributor.author | Jacobs, D.P. | |
dc.contributor.author | Trevisan, V. | |
dc.contributor.author | Rayers, M.O. | |
dc.date.accessioned | 2019-06-10T19:03:32Z | |
dc.date.available | 2019-06-10T19:03:32Z | |
dc.date.issued | 2008 | |
dc.description.abstract | Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these pseudoprimes Chebyshev numbers, and show that n is a Chebyshev number if and only if n is odd, squarefree, and for each of its prime divisors p, n≡±1modp−1 and n≡±1modp+1. Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than 10¹⁰, although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials. | uk_UA |
dc.description.sponsorship | Research partially supported by CNPq - Grants 478290/04-7 and 43991/2005-0;and FAPERGS - Grant 05/2024.1 | uk_UA |
dc.identifier.citation | Characterization of Chebyshev Numbers / D.P. Jacobs, V. Trevisan, M.O. Rayers // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 65–82. — Бібліогр.: 17 назв. — англ. | uk_UA |
dc.identifier.issn | 1726-3255 | |
dc.identifier.other | 2000 Mathematics Subject Classification:11A07, 11Y35. | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/152391 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Algebra and Discrete Mathematics | |
dc.status | published earlier | uk_UA |
dc.title | Characterization of Chebyshev Numbers | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: